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Abstract

One of the adaptive strategies of vegetation, particularly in water limited ecosystems,
is the development of deep roots and the use of hydraulic redistribution which enables
them to make optimal use of resources available throughout the soil column. Hydraulic
redistribution refers to roots acting as a preferential pathway for the movement of water
from wet to dry soil layers driven by the moisture gradient — be it from the shallow to
deep layers or vice versa. This occurs during the nighttime while during the daytime
moisture movement is driven to fulfill the transpiration demand at the canopy. In this
study, we develop a model to investigate the effect of hydraulic redistribution by deep
roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study
site which has wet winters and dry summers. Hydraulic redistribution enables the
movement of moisture from the upper soil layers to deeper zones during the wet months
and this moisture is then available to meet the transpiration demand during the late dry
season. It results in significant alteration of the profiles of soil moisture and water
uptake as well as increase in the canopy transpiration, carbon assimilation, and the
associated water-use-efficiency during the dry summer season. This also makes the
presence of roots in deeper soil layers much more important than their proportional
abundance would otherwise dictate. Comparison with observations of latent heat from
a flux tower demonstrates improved predictability and provides validation of the model
results. Hydraulic redistribution serves as a mechanism for the interaction between the
variability of deep layer soil-moisture and the land-surface climatology and could have
significant implications for seasonal and sub-seasonal climate prediction.

1 Introduction

Plants are known to exhibit an evolutionary adaptation to adverse environmental pres-
sures. This includes unique growth forms that increase competitiveness for light and
water. By shifting the balances of environmental stresses in favor of the plant, the adap-
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tation increases the plant’s chances of survival and productivity. One of such unique
adaptations that has received increasing attention over the last two decades is the
deep-rooting nature of plants (Stone and Kalisz, 1991; Canadell et al., 1996; Jackson
et al., 1999) and the associated phenomenon known as “hydraulic lift” (Richards and
Caldwell, 1987; Caldwell and Richards, 1989; Dawson, 1993, 1996; Caldwell et al.,
1998), or more accurately characterized as “hydraulic redistribution” (Burgess et al.,
1998, 2000, 2001; Hultine et al., 2003, 2004; Brooks et al., 2002, 2006). Root systems
of plants are known to extend vertically into the soil for considerable depths and tap wa-
ter and nutrients from both deep and shallow soil layers, that is, they exhibit patterns of
uptake of water and nutrients in accordance with the variability of resources at different
soil depths. The term “hydraulic lift” (hereinafter, HL) refers to the passive movement
of water via plant roots from deep moister soil layers to shallow drier soil layers. The
term hydraulic redistribution (hereinafter, HR) is a general term that incorporates both
the upward and the downward transfer of water, i.e., from shallower layers to deeper
layers via roots (inverse HL) (Schulze et al., 1998; Smith et al., 1999). Thus, HR can
be defined as “a passive movement of water via plant roots from relatively moist soil
layers to drier soil layers”. In HR, plant roots form a conveyance system between soil
layers through which water is transported.Therefore, moisture gets absorbed and re-
leased in response to gradients in water potential between the roots and the soil. This
is in agreement with the theory for water movement in soil-plant-atmosphere continuum
(SPAC), in which water transport is governed by water potential gradient (Dixon, 1914;
van den Honert, 1948; Philip, 1966; Kramer and Boyer, 1995).

Figure 1 shows a schematic of the hydraulic redistribution. During day time, transpi-
ration from the leaves via the open stomata creates water potential gradient between
the leaves and the roots, resulting in net water movement from the soil to the roots and
then to the leaves. Water is absorbed from all depths depending upon the potential
gradient and passes into the transpiration stream at the leaves. This is true both during
wet and dry seasons. During night time, the stomata closes, resulting in turgor pres-
sure that increases water potential within the plant body. As the potential in the root
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exceeds the potential in the drier part of the soil, moisture starts to efflux from the root
to the dry soil, while water still continues to flow into the roots in the wetter part of the
soil. During dry seasons, the upper soil is often drier than the deeper part of the sail,
and the net water transport via the roots during night is thus upwards, from deeper to
shallower layers, as shown in the left-panel of Fig. 1. On the other hand, during wet
seasons, the upper soil layers get wetter than the deeper layers, and the net water
movement through the roots will be downwards as shown in the right-panel of Fig. 1.

Hydraulic redistribution is a reverse flow, in the sense, that the moisture transport
occurs in the reverse direction, from the root to the soil, than what transpiration dic-
tates. The origin and evolution of this phenomenon is not clear yet, but there is much
experimental evidence that shows its existence in numerous plant species (Table 1).
This evidence, coming from both laboratory and field experimental studies, shows that
this process moves water through the soil profile at a much faster rate than could have
been possible by gravity and diffusion in the soil matrix alone.

Though the majority of the documented cases of HR are for arid and semi-arid en-
vironments, given the phenomenon is dictated by water potential gradients, it undoubt-
edly is a feature in any vegetated environment experiencing water-limitation in parts of
the root system (Oliveira et al., 2005). If root systems span a suitable water potential
gradient, HR should be expected as long as there is no impediment to the reverse
flow, that is, the efflux of water from the roots, and considerable evidence supports this
hypothesis. Water-limitation, even if it occurs for short periods, is a feature of most
biomes (Caldwell et al., 1998), and the necessary water potential gradients for HR may
exist sporadically or regularly in many soils. The diversity of species represented in
Table 1 also suggest that HR may occur in a large number of plant species, rather than
limited to particular plant groups; though the quantity of hydraulically distributed water
may depend directly on the depth to which roots penetrate the soil and the ability of
the plants to maintain conductive root systems in relatively dry soil. These could por-
tray the mechanism of HR as a general root system phenomenon, widespread both in
species and ecosystems. The widespread nature of HR calls for the necessity of in-
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corporating plant-water transport dynamics into ecosystem and climate models where
it has been traditionally overlooked.

The objective of this study is to develop a physically-based model of HR and to inves-
tigate its role in influencing the terrestrial eco-climatology. Of paramount importance
is the effect of HR on soil-water climatology and fluxes at the land-atmosphere inter-
face. In Sect. 2 we present the derivation of the HR model. Section 3 describes the
study site and sources of model input datasets. In Sect. 4 we provide the results and
discussions, followed by summary of the main points in Sect. 5.

2 Modeling hydraulic redistribution

Traditionally, the water uptake by plant roots in land-surface models is parameterized
as a function of transpiration E;, soil moisture content 6,,,; of the root zone, and the
root distribution o, within the soil profile. That is,

S= f(Etferoot’proot) (1)

where S is the water extracted by roots, and it is incorporated as a sink term in the
Richards equation for vegetated environments, given as

06 0 OWen
E—E[Ksh(az —1)]—5 (2)

where 8(z) is the volumetric soil moisture content, ¢ is time, Kg,(2) is soil hydraulic
conductivity, y,,,(2) is soil matric potential, and z is depth. For notational convenience,
explicit dependence of the variables on z is dropped, henceforth. There are several
variations of Eq. (1), as can be seen from the formulations in current land surface
models (e.g., Liang et al., 1994; Wetzel and Boone, 1995; Dai et al., 2003; Oleson et
al., 2004). However, they do not incorporate the flow dynamics within the root system,
and hence, the importance of moisture redistribution via plant roots.
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Modeling the effect of moisture redistribution by plant roots demands the considera-
tion of flow in the root system in conjunction with the flow in the soil. In such a modeling
approach, plant roots can be viewed as a continuum like the soil media. While it may
not be practical to model flow in individual roots, macroscopic approaches that con-
sider the root system as a whole, that is, a “big root” model, might be considered for
such purposes. In the past, a few attempts have been made to model HR (e.g., Ryel et
al., 2002; Ren et al., 2004; Lee et al., 2005). These models, however, parameterize the
hydraulic redistribution as a function of the water potential between different soil layers
and do not model the actual pathway for moisture movement within the plant system.
The present work is distinct in that we have developed a physically-based dynamic
model of HR that includes two way moisture movements through the coupled soil-root
transport system.

Our approach of modeling HR couples water flows within the soil and root media,
where flow in both media is governed by the water potential gradient and the hydraulic
conductivities of the systems. The root is assumed to absorb moisture from and/or
release moisture to the soil, depending on the water potential gradient. In doing so, the
root system is considered as a conduit for moisture transport from wet soil reservoirs to
dry soil reservoirs, while at the same time conveying moisture to fulfill the transpiration
demand at the canopy. Governing equations for flow through both soil and root are
solved as a set of coupled equations. Figure 2 shows a schematic description of the
model. A detailed derivation of the root model, as developed in this study, is presented
next.

Plant roots can be viewed as a network of pipes consisting of xylem tubes (Gurevitch
et al.,, 2002; Tyree and Zimmermann, 2002) that convey water from the soil to the
stem, from where it is distributed to the leaves. In this system, the flow is governed
by pressure gradient, established by the transpiration demand at the leaves, resulting
in water being “pulled”. Assuming root xylem conduits as cylindrical tubes conveying
laminar flow, the velocity profile in the tubes takes a parabolic shape, with maximum
at the center of the tube and minimum at the boundaries (e.g., see Kundu and Kohen,
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2002). Assuming vertical flow and accounting for gravity, the velocity distribution across
the tube is expressed as

2_ 2 apX em
u(r) = <r — > < d +pg> @

where u(r) is velocity at a radial distance r from the center of the tube, R is the radius
of the tube, 1 is the viscosity of the water in the tube, and p,yem is the pressure in the
xylem tube, p is density of water in the tube, and g is the gravitational acceleration.
The flow rate Q,yen, is then given by

R
‘Il’:"-t’4 apxylem
Qyylem = / 2nru(r)dr = +p09 ). (4)
0

S8y \ oz

Equation (4) is the well known Hagen-Poiseuille equation for vertical pipes. Denoting
[nylem=7TR4 / 8u] to represent the hydraulic conductivity of the pipe, the above equa-
tion can be rewritten as

a:nylem
Oxylem = _nylem <T +09 ). )

For a system of roots with n number of xylem tubes (see Fig. 3), the total flow rate
in the root system is additive of the flow rates of individual tubes. In other words,
the conductivities are additive for parallel vessels, provided that the pressure gradient
driving the flow is the same in all vessels. Thus, the axial conductivity of a root system
can be approximated as

n
Kin ax = z nylem,i (6)
i=1
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where Ky, o is the root system hydraulic conductivity in the axial direction, and Kyjem ;
is the hydraulic conductivity of the /th xylem vessel in the system of n vessels. Thisis an
important assumption that enables a macroscopic characterization at the root system
scale from the microscopic characterization at the individual xylem scale. Thus, the
flow rate for the root system, Q,,., can be expressed as

op
Oroot = _Krh, ax <a—r200t + pg) (7)

where p,..: is the mean pressure in the root system. In the above equation, the hy-
draulic conductivity Ky, 5, has dimension of [L*T~"Pa™"] and the flow rate Q\o0t has
dimension of [L3T'1]. In terms of root pressure potential v, Eq. (7) can be written as

Oy
Qroot = _Krh,ax <¥ + 1) (8)

where Kjy, o, now has the same dimension as Q. [L3T™"]. The water flux (flow rate
per unit ground area) through the root system can then be approximated as

oW,
Groot = —Kin ax <W + 1> 9)

in which the dimension of g,,,; and Ky, 5, becomes [LT™"]. Note that Kin ax @nd y;,, are
functions of the soil depth z.

Assuming that there is a balance between water flowing into and out of the root
system, that is, assuming no storage within the root, and using continuity we get

aqroo’[
0z
where S is the source term (inflow rate into the root) and equal to the sink term for the

soil in Eq. (2). Substitution of Eq. (9) into Eqg. (10) leads to a governing equation for
3726
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flow in the root system,

0 oy,
—E [Krh,ax <6—er+1>] =S. (11)

The governing equations of flow in soil media (Eq. 2) and in root media (Eq. 11) are
linked by the sink/source term S. Modeling of the hydraulic redistribution demands a
sink/source term that allows water flow in both directions — from the soil to the root
and from the root to the soil — depending on the water potential difference between
the soil and the root xylem. One very important assumption we make here is that root
membrane is equally permeable in both directions.

Water goes through complicated pathways in entering the root xylem from the soil
media (see Steudle and Peterson, 1998; Steudle, 2000; Taiz and Zeiger, 2002; Gre-
gory, 2006). A practical way of modeling such complex process is to treat the entire
multi-cellular pathway, from the root hairs to the root xylem, as if it is a single per-
meable membrane. Such a simplification is important for adopting a unified hydraulic
conductivity for the radial path, that is, from the soil to the xylem tube. The main forces
governing water transport between the soil and the root xylem are the pressure and
osmotic potentials. Thus, the water flux between the soil and the root xylem is given by
(Fiscus, 1975)

S = Kin, rad (Awp - AWo) (12)

where Ky, (a4 is the root hydraulic conductivity in the radial direction, Ay, is pressure
potential difference between the soil and the root xylem, and Ay, osmotic potential
difference between the soil and the root xylem. Note that, water potential difference,
instead of water potential gradient, is used in the above expression. This is done as it
is impractical to know the distance water travels between the soil and the root xylems.

Several experimental studies (e.g., Kramer, 1932; Frensch and Steudle, 1989; Tyree
and Zimmermann, 2002) have indicated that the rate of movement of water by osmosis
across a multi-cellular root membrane is very slow (10-20 time smaller) as compared
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to water passage across the membrane by pressure gradient between the soil and the
root xylem vessels. This indicates that sufficient water could not enter the roots of
an actively transpiring plant by such osmosis processes to replace the water lost by
transpiration. It was understood that when a plant is transpiring rapidly enough to set
up a tension in the water conducting xylem vessels, this tension continues from the
xylem across the root membrane into the soil, and would result in an inflow of water
from the soil into the xylem through the membranes. Thus, Ay, can be assumed
negligible (as it is much smaller than Ay, except for saline environments). With this
assumption, Eq. (12) becomes

S= Krh,radAWp = Krh,rad (Wsm - er) . (13)

Substituting Eq. (13) into Egs. (2) and (11), we arrive at the two basic governing equa-
tions for modeling HR:

_t 9z [Ksh <5Wsm - 1)] —Kin, rad (Wsm - er)
_E [Krh,ax (all/rp + 1)] Krh rad (WSm l//rp)

Both equations are functions of water potentials of the soil and the root, and need to
be solved simultaneously using numerical techniques by dividing the vertical column
into layers. One parameter that needs more elaboration is the hydraulic conductivity
of the roots. A study by Campbell (1991) suggested that root resistance in any soil
layer is directly proportional to the total root resistance and inversely proportional to
the fraction of roots in that layer. Based on this concept, the root conductivity in any
soil layer can be assumed directly proportional to both the total conductivity of the
root system and the root fraction in that layer. Further, studies have reported the soil
moisture dependence of root conductivity (e.g., Nobel et al., 1990; Lopez and Nobel,
1991; Wan et al., 1994; Huang and Nobel, 1994; Steudle and Frensch, 1996). Taking
all these into consideration, the root hydraulic conductivity in ith soil layer is assumed to
be a function of the total root conductivity of the root system K, 1015, the root fraction
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in that layer £, ;, and the relative soil saturation of that layer [6 /6] ;. Thus,

e v _
Krhli = (Froot-e_t) Kroot,total or Krhl/ = (Froot( Wsn: )( 1/b)) ‘ Kroot,total (15)
sa sa i

where 6, is soil moisture content at saturation (i.e., soil porosity). Typical values
of the radial root conductivity is in the order of 107"°mms™’ per unit mm of water
potential difference between the soil and the root xylem (e.g., see Huang and Nobel,
1994), while that of the axial root conductivity is in the order of 10 mms™" per unit
water potential gradient along the root (e.g., see Pate et al., 1995). To obtain similar
order of magnitudes using Eq. (15), while at the same time allowing variation with soil
depth, we set the value of Ky totq 1O 5x107%s™" in the radial and 2x10™" mms™" in
the axial directions (also, see Table A1). These values are by no means perfect, but
are reasonable order of magnitudes based on the availability of limited observations in
the field. The hydraulic conductivity and matric potential of the soil are functions of the
soil moisture content and the soil texture (Clapp and Hornberger, 1978; Oleson et al.,
2004), and are described in the Appendix A see (Egs. A1-A6).

The root fraction F,,,; is modeled following the methodology of Schenk and Jackson
(2002), who, using a global root profile database consisting of more than 500 data
points, have developed a two-parameter root distribution model that takes the form of
a logistic function. Derived from their model, the root fraction in a given /th soil layer of
thickness Az; can be obtained as

¢ (z\°! z \° N
o = =02 (2) 7 1+ (2)]] (16)
o= _ 127875

~ log(zsp)-log(zgs)

i

where z; is depth from the surface to the center of the /th soil layer, and z5, and zq5 are
50th and 95th percentile rooting depths, respectively, that is, depths from the surface
above which 50% and 95% of all roots are located. The values of z5y and zy5 are
dependent on plant functional types.
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Equations (14), (15), and (16) provide the complete model for HR of the “big-root”
model described above. In the coupled system of governing Eq. (14), we have two
differential equations (one for the soil and one for the root) and three unknowns: the
soil moisture content 8, the soil matric potential v, and the root pressure potential
W Since 6 and yg,, are related (see Eq. A2), the two equations are sulfficient for
solving the problem numerically using a finite-difference scheme.

To facilitate the numerical solution, the soil column is discretized into 12 soil layers
(see Fig. 4). In order to resolve more soil layers near the surface, where the moisture
gradient is generally strong, an exponentially increasing soil layer thickness with depth
is adopted. Further, to account for deep roots, the total soil depth is set to 10 m for all
of the simulations. Also given in Fig. 4 are the profiles of root fraction and soil texture
for the study site (see Sect. 3 for descriptions of the study site and the data source).

The bottom boundary condition for the soil model is set to the hydraulic conductivity
of the bottom soil layer, whereas the upper boundary condition is set to the infiltration
rate, which is modeled as the minimum of throughfall and available capacity in the top
soil layer, that is,

Qinf/ = Min (qthrough' %(esatj - 91)) } (17)
Gthrough = qrain9_§XLAl

where Girougn is throughfall, g, is gross precipitation rate, and ¢ is a constant, LAI
is leaf area index, Az, is the thickness of top soil layer, 8, is moisture content of the
top soil layer, 84, ¢ is the moisture content at saturation of the top soil layer, and At is
the model time step. The bottom boundary condition for the root model is set to no flux
boundary condition, and the upper boundary condition is set to the transpiration rate.
The “big-leaf” approach of Penman-Monteith (Monteith and Unsworth, 1990) is used to
model the transpiration from the canopy and is described in the Appendix.

The model presented above makes some important assumptions such as

— It assumes that the entire root system is absorbing and this does not change with
time.
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— It ignores the flow resistance offered by the end wall pit-pore membranes that
connect xylem conduits (Hacke et al., 2006).

— It does not incorporate temperature induced changes in water viscosity and root
hydraulic properties.

— It does not incorporate limitations in HR due to the changes in nighttime stomatal
conductances.

These assumptions may be relaxed through future work and when data becomes avail-
able to enable better parameterization across different plant functional types.

3 Study site and model input data

The target geographical area for this study is vegetated environment characterized by
deep-rooting and water-limitation, such as the vegetated areas of arid and semi-arid
climates. A site within the Sierra Nevada ecosystem is selected for this study, which
lies at 119°00'=119°30' W longitude and 37°00'-37°30’ N latitude (see Fig. 5). The
climate of the area is characterized by long dry summer and wet winter (see Fig. 6),
with average annual precipitation of about 850 mm and average temperature of about
11°C.

The dominant vegetation of the site includes lodgepole pine, ponderosa pine, fir-
spruce, and hardwoods (see Fig. 5). Vegetation at lower elevations is dominated by
lodgepole pine on the east and ponderosa pine and hardwoods on the west, with fir,
spruce, and alpine tundra occupying the higher elevations. Vegetation in the region is
known to have deep-root systems. For example, the study by Hellmers et al. (1955) in
southern California reports plants with roots as deep as 8.5 m. Much of the roots were
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found penetrating weathered rocks underlying shallow soils. DeSouza et al. (1986)
observed rooting depth of greater than 13 m for shrubs in the region. The work of
Lewis and Burgy (1964) reveals a depth of 23 m for roots of oak tree plants in the
area. Through excavation of fractured sandstone in southern California, Thomas and
Davis (1989) observed 5.5 m root depth for chaparral plants. A study by Cannon (1914)
reports a root depth of 11 m for the area.

The HR model described in the previous section requires several input datasets,
which can be grouped into two classes: atmospheric and surface data. The atmo-
spheric forcing data includes precipitation, temperature, solar radiation, humidity, wind
speed, and pressure. For the study site, these datasets are extracted from the North
American Regional Reanalysis (NARR) dataset (Mesinger et al., 2006) for the period
1979-2005. NARR data is a long-term (1979-present) climate dataset covering the
North American Continent. It has spatial resolution of 32 km and temporal resolution of
3h. The data is disaggregated from its original 3 h resolution to the model’s time step
(which is 30 min) using linear interpolation.

The surface dataset for the model includes the soil and vegetation data. The model
requires the vertical profile of soil texture data (%clay and %sand) to compute the
hydraulic and thermal properties of the soil. This data is obtained from the Inter-
national Geosphere-Biosphere Program (IGBP) soil dataset (Global Soil Data Task,
2000). The soil profile for the site contains more percentage of sandy (~50%) than
clay (~25%) (see Fig. 4). Vegetation data developed by Bonan et al. (2002), based
on plant-functional-type (PFT) classification, is used for this study. Derived from the
land cover dataset of IGBP (Loveland et al., 2000), the dataset consists of seven pri-
mary PFTs (needleleaf evergreen or deciduous trees, broadleaf evergreen or decidu-
ous trees, shrubs, grasses, and crops) at 0.5° latitude-longitude resolution. Important
vegetation parameters that are extracted from the data include the dominant PFTs
for the study sites and the associated fractional coverage, leaf-area-index, vegetation
height, and root parameters. LAl is allowed to vary seasonally, while the fractional veg-
etation cover and other vegetation properties are assumed constant. For the model,
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area-weighted average values of the vegetation properties of the dominant PFTs are
used. The dominant PFTs for the study site consist of needleleaf evergreen trees
(46%), grasses (52%), and broadleaf deciduous trees (2%). The various parameter
values used in the model are given in Table A1.

4 Results and discussions

In this study, to investigate the effect of hydraulic redistribution by plant roots on terres-
trial climatology, we setup two simulation scenarios, which are described as follows:

Case 1 — No hydraulic redistribution: In this case, HR is not considered. As opposed
to Eq. (14), this case uses Eq. (2) for simulating the soil moisture profile and Eq. (1)
for modeling the water uptake by roots. In essence, this is same as the modeling
approaches used in current land-surface models.

Case 2 — With hydraulic redistribution: In this case, HR is considered, and Eq. (14)
is the governing equation for simulating the soil moisture and the root water uptake
profiles.

For both cases, the rooting depth is set to 10 m, and the root distribution profile
is defined by logistic function as given by Eq. (16) (see Fig. 4). The simulations are
performed for 27 years (covering the period 1979-2005). At the start, the soil column
is initialized to saturation moisture content, and the simulation is repeated twice for
the first year (1979) for spin-up. All of the results presented here are monthly or daily
average of the entire simulation period of 27 years, excluding the spin-up period.

4.1 Hydraulically redistributed water

Before discussing the effect of HR on terrestrial climatology, let us first look at into
the quantity of water redistributed by roots, termed here as “hydraulically redistributed
water” (HRW). Note that, the issue of HRW is only for Case 2. The HRW at each time
step is obtained by integrating the quantity of reverse flow (i.e., from the root to the soil)
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over all soil layers, that is,

Zmax

HRW = / Krh,rad(Wsm - er) dz, for Ysm < er (18)
0

where z,,,, is the maximum root zone depth, here set to 10 m.

Figure 7 compares the HRW with the transpiration rate for the study site. The aver-
age HRW is in the order of 1 mm per day. Compared to transpiration, the HRW has less
seasonality. During summer, the HRW amounts to about 30—40% of the transpiration
rate. During winter, the transpiration is very low, and the HRW can be as high as 3—4
times the transpiration rate. The HRW seems to correlate very well with precipitation,
i.e., it is higher during the wet season and lower during dry season. This has the impli-
cation that the downward transfer rate of water during the wet season is larger than the
upward transfer during dry summer season. This is contrary to one’s expectation, but it
should not be surprising as the hydraulic conductivity of the roots is higher during wet
season (see Eq. 15), leading to a large quantity of downward moisture transfer during
rainy periods.

4.2 Water uptake profile
4.2.1 Diurnal profile

Figure 8 shows the diurnal root water uptake profiles for simulation cases without HR
(Case 1) and with HR (Case 2). The two cases provide dramatically different water
uptake profiles. For the case without HR (Fig. 8, top panels), moisture movement
takes place only from the soil to the root, and hence, the uptake is always positive. For
this case, during night time, the uptake is negligible because of the stomatal closer.
During day time, water is taken up from all soil layers, and the water uptake profile
generally follows the root distribution profile. The peak water uptake occurs in the late
afternoon (around 04:00 p.m.).
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For the case where HR is incorporated into the model formulation (see Fig. 8, bot-
tom panels), moisture movement between the soil and the roots is bi-directional, with
moisture flow from the soil to the root or vice versa depending on the water potential
gradient. In the figure, negative values indicate a moisture movement from the root to
the soil, while positive values indicate movement from the soil to the root as in Case 1.
During night, water is transferred from relatively wet part of the soil (in this case, upper
and lower soil layers) to dry part of the soil (in this case, the middle soil layers with the
highest root density) via plant roots. During day time, water is taken up from all soil
layers. The net water uptake profile, averaged over the entire period, shows a dispro-
portionately high water uptake from the deeper soil layers with respect to the proportion
of roots in those layers. A noticeable pattern is the nearly uniform uptake of moisture
over the vertical profile as compared to Case 1 where the uptake is reflective of the
profile of the root distribution.

4.2.2 Seasonal profile

Figure 9 shows the seasonal root water uptake profiles for the two simulation cases.
Similar to the diurnal profiles, we see completely different water uptake patterns be-
tween the two cases. When the HR is not considered (see Fig. 9, top panels), the
uptake profile is dictated by the root profile both during wet and dry seasons. Un-
der this condition, because the total uptake is governed by transpiration, the uptake is
higher during dry/summer season than during wet/winter season. During wet season,
there is sufficient moisture throughout the soil profile and the uptake from each layer is
directly controlled by the proportion of roots in the layers. As the rainy season starts to
cease, the near surface soil moisture starts to decline at faster rate than the moisture
at deeper soil layers because of the difference in the root density. As the dry season
approaches, the top soil layers get drier while the bottom layers are still moister. Con-
sequently, during dry season, in addition to the root fraction, the soil moisture level
starts to control the moisture uptake, and the depth of maximum water uptake will shift
down towards regions of more moist soil layers.
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For the case with HR (see Fig. 9, bottom panels), the uptake profile does not corre-
late with the root distribution profile. During wet winter season, the upper soil is wetter
than the deeper soil, and the net moisture transport via plant roots is downward (from
upper soil layers to lower soil layers). During this time, the moisture transferred to the
lower layers is higher than the moisture taken up from these layers, leading to a net
moisture release into the soil from the root at the lower layers (negative uptake). During
dry summer season, the upper soil is drier than the deeper soil, and the net moisture
transport via plant roots is upward, and moisture is released into the upper soil layers
during night. The amount of moisture released into the upper soil layers during night
is less than the amount taken up during day time from these layers, leading to a net
positive moisture uptake. The net moisture uptake from the deeper soil layers during
the summer is significantly higher than the uptake from the upper soil layer, despite the
very small root proportion in the deeper soil layers.

4.3 Soil moisture profile

Figure 10 shows the moisture profile over the entire simulation period for both cases,
indicating the influence of HR on the seasonal and inter-annual variability of soil mois-
ture. The incorporation of HR has significantly changed the moisture profile. The
inter-annual variation of the effect of HR on the soil moisture profile is evident from
the plots. The effect is highly pronounced during consequent dry years during the mid
and the last years of the simulation period. As expected, the HR results in higher net
upward moisture transfer during the dry years, resulting in reduced moisture in deeper
layers.

During wet season, the incorporation of HR causes a net decrease of moisture con-
tent over the whole soil profile (see Fig. 10, bottom-left). The decrease of moisture in
the upper soil layers is due to the net downward transfer of water via the roots during
the night (when the stomata closes and transpiration ceases). However, the amount
of moisture transferred from the upper to the lower layers is not sufficient to bring the
moisture state of the lower layers to the level when there is no HR; thus, the deeper

3736

HESSD
4, 3719-3769, 2007

A model for hydraulic
redistribution

G. G. Amenu and
P. Kumar

Title Page
Abstract Introduction
Conclusions References

Tables Figures

1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3719/2007/hessd-4-3719-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3719/2007/hessd-4-3719-2007-discussion.html
http://www.egu.eu

10

15

20

25

soil layers still have a lower soil moisture content than when there is no HR.

During dry season, the net effect of HR is a significant increase of moisture in the
upper soil layers and a decrease in the lower soil layers (see Fig. 10, bottom-center).
During this period, the deeper soil is often wetter than the shallower soil, leading to a
net upward moisture transfer via plant roots and resulting in an increase in moisture in
the upper layers and a decrease in the lower layers. The long-term net impact of the
HR on soil moisture is an increase of moisture in the upper soil layers and a decrease in
the lower soil layers (see Fig. 10, bottom-right). This leads to a more uniform moisture
profile over the soil depth for the simulation with HR compared to the case without HR.

4.4 Transpiration, carbon assimilation, and Water-Use-Efficiency

The model for simulating the transpiration rate E; is described in the Appendix (see
Egs. A7-A22). Following the formulations of Farquhar et al. (1980); Collatz et
al. (1991), and Leuning (1995), carbon assimilation rate is modeled as

A=min (A A, Ag) 20 (19)

where A is assimilation rate per unit leaf area, A, is assimilation rate limited by Ribu-
lose Bisphosphate carboxylase-oxygenase (Rubisco) activity (i.e., assimilation limited
by CO, concentration), A, is assimilation rate limited by the capacity of Ribulose Bis-
phosphate (RuPB) regeneration through electron transport (i.e., assimilation limited by
light), and A, is assimilation rate limited by the capacity to export or utilize photosyn-
thetic products. Detail parameterization for these three limiting factors is given in the
appendix. Assimilation rate per unit ground area is obtained by multiplying the above
equation by the leaf-area-index (LAI). Where moisture supply is limiting during parts of
the year, as is the case for the study site, plants often strive to maximize their water-
use-efficiency (WUE), which is defined as the ratio of carbon dioxide influx to water
efflux at the canopy (Fitter and Hay, 2002; Taiz and Zeiger, 2002; Berry et al., 2005).
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In this study, WUE is modeled as

A/Amax
Et/Et,max

where A, and E; ., are the maximum assimilation and transpiration rates, respec-
tively, and are used for scaling.

Figure 11 shows the annual cycles of transpiration, carbon assimilation, and WUE
for both cases under consideration (with and without HR). The effect of incorporating
HR into the model has resulted in the increase of all the three variables. This increase
is particularly very prominent during the summer dry season. In contrast to the transpi-
ration and assimilation, which attains their maximum during summer, the WUE attains
its maximum during the winter. It is not clear why the WUE shows this pattern although
we offer a couple of explanation. First, during winter the humidity of the overlying atmo-
sphere at the study site is high (not shown), hindering the transpiration rate with little
or no effect on the assimilation rate. Second, during summer the wind speed is low for
the site, increasing the leaf boundary layer resistance. Since the resistance to carbon
dioxide in the boundary layer is in the order of 1.4 times the resistance offered to water
(Fitter and Hay, 2002; Taiz and Zeiger, 2002), the assimilation is affected by the low
wind speed more than the transpiration does.

WUE = (20)

4.5 Bottom drainage

Because HR alters the water uptake and the soil moisture content of the bottom soil
layer, it has the potential to influence the drainage rate at the bottom of the soil column.
The mechanism of HR strives to maximize the plant water usage within the root zone
by reducing moisture loss from the root zone by gravity. Figure 12 shows the effect of
HR on the drainage from the soil column at the bottom. The HR results in a significant
decrease of the bottom drainage. This agrees with the moisture decrease observed in
the bottom soil layer with the HR simulation.
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The reduction of bottom drainage could have an implication on the recharge rate
to the groundwater. Thus, in deep-rooted vegetation environments of the arid and
semiarid regions, the HR mechanism has the potential to create a barrier to deep
drainage at the bottom of the root zone, while maximizing the water available to plants.

4.6 Comparison with observations

A unique aspect of the study presented above is the lack of any calibration to match the
model performance to observations. However, it is important to assess the predictive
capability of the model through comparison with observations. Observations of sub-
surface hydrological variables, such as soil moisture and water uptake are often rare
to find. Particularly, observations of deep-soil processes are non-existent. Therefore,
in this study, we use surface and near-surface observations of available datasets to
validate some of the results. Here, we make use of the soil moisture and latent heat
flux observations at the nearby FLUXNET station (see Baldocchi et al., 2001) for this
purpose. The FLUXNET station available in the vicinity of the study site is the Blodgett
station, located at 38°54' N and 120°38’' W in the Sierra Nevada ecosystem, having
similar vegetation and climate as the study site. In contrast to the long-term model
simulation (1979-2005), the available observation at the Blodgett station covers only a
short period from 1999 to 2005. Further, the soil moisture data is available only for the
surface layer.

Figure 13 (left panels) show comparison between the simulated soil moisture of the
top soil layer at the study site for the two cases and the observed soil moisture at the
Blodgett station. The soil moisture simulation captures the general trend. We should
not expect a close match because while the simulations represent the average of a 0.5°
latitude-longitude grid, the observations provide point values. Figure 13 (right panels)
show similar comparison for the latent heat flux. The plots are based on the average
over the observation period (i.e., 1999-2005). There is a reasonable agreement be-
tween the simulated and observed datasets. Note that the simulated latent heat flux
when HR is incorporated (Case 2) is in a better agreement with the observation. In
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particular, note the improved correspondence during the summer dry period where the
deeper layer provides the moisture to meet the evaporative demand. This indicates
that the negligence of HR mechanism in land-surface models could potentially under-
estimate the latent heat flux from vegetated surfaces in water-limited environments and
consequently the entire surface energy balance and its impact on the climate system.
This issue is under investigation.

5 Summary and conclusions

The focus of this work is the development of a multi-layer model to characterize hy-
draulic redistribution by vegetation roots, particularly in environments that experience
water limitation. The HR is modeled by assuming the plant root system as a conduit
for moisture transport along a pressure gradient.

The developed model is able to effectively simulate the soil moisture and water up-
take patterns. When comparing with the simulation without HR, the incorporation of
HR resulted in sizable alteration in the profiles of soil moisture and water uptake. It
has also tremendously intensified the canopy transpiration and the associated carbon
assimilation and water-use-efficiency (WUE) during dry-summer season. For the study
site the average percentage increase in transpiration, assimilation, and WUE are 53%,
56%, and 17%, respectively. Simulation with HR produced better agreement with ob-
servation of latent heat flux.

The HR phenomenon makes the presence of roots much more important than their
abundance for the deep soil layers. This study shows that HR enhances tremendously
the contribution of deep roots to the water uptake by plants. The quantity of moisture
taken up from deep soil layers is disproportionately high when compared to the propor-
tion of roots at those depths. HR can be seen as a mechanism by which the vegetation
makes optimal use of available water. It appears to be a water conservation mecha-
nism for the plant’s usage that has adaptive importance and is most significant when
deep roots are present. The mechanism may allow the plant to survive under extended
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dry periods.

In general, the redistribution of soil water by plant roots is an important component
of below-ground hydrological processes and, in conjunction with deep-rooting, forms
strong linkage between the long-memory deep-soil reservoir (see Amenu et al., 2005)
and the relatively short-memory atmospheric system. By enhancing the effectiveness
of water uptake by plant roots from long-memory deep soil reservoirs, the HR mecha-
nism may have the potential to influence the predictability of climate at seasonal and
longer time scales and need to be considered in any hydroclimatological and/or hy-
droecological modeling. The HR model presented in this study can be incorporated
into large scale models for further evaluation.

One of the challenges that we will encounter in large scale implementation of the pro-
posed model is the specification of the parameters associated with different plant func-
tional types in various biomes. Since the new parameters proposed here deal mostly
with below-ground characterization, this may be a challenging task for its widespread
application. It is our belief, however, that the need for the characterization of these
processes in models to attain improved predictability will be significant enough to rally
a wider research community to address this problem.

Appendix A

A1 Soil hydraulic properties

The hydraulic properties of soil (i.e., hydraulic conductivity and matrix potential) are
functions of the soil moisture content and the soil texture, and are expressed as (Clapp
and Hornberger, 1978; Oleson et al., 2004)

9 2b+3
Ksh = Ksat (e_t) (A1)
sa
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9 \P

Vsm = Wsat (9_> (A2)
sat

where the saturation values of soil hydraulic conductivity Kg;, soil matric potential gy,

and volumetric soil moisture content 8., and the constant b are functions of soil texture

(percentages of sand and clay contents). This can be obtained as (Oleson et al., 2004)

Ksat = 0.0070556x 1070884+0.0158(%sand) gy ¢ 7) (A3)
Weat = — 10x1 01 .88-0.013(%sand) (A4)
Osat = 0.489 — 0.00126x(%sand) (A5)
b = 2.91 + 0.159x(%clay) (A6)

in which ¢ is the decay rate of K ,; with soil depth (Beven and Kirkby, 1979).
A2 Parameterizations for the transpiration model

The canopy transpiration is modeled using the Penman-Monteith approach, which is
given by

£ AxQ,+ Cp (6sat(T2) — €4) 924
t A[AXQC+V(QC+Qa)]

where E; is transpiration rate, ), is net external energy, C, is heat capacity of air at
constant pressure, eg,(7T,) is saturation vapor pressure at air temperature 7,, e, is
actual vapor pressure, 1 is latent heat of vaporization, A is slope of saturation vapor
pressure curve at air temperature, y is psychrometric constant, and g, and g, are
canopy and aerodynamic conductance, respectively. The net external energy, Q,, is
estimated from

9o (A7)

4 4 AT,
On = (1 - O'S)Fn’s + G(SaTref - 8sTs) - Csoilﬁze (A8)
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where R, is incoming solar radiation, a; is surface albedo, o is Stefan-Boltzman con-
stant, T, is air temperature at reference height (taken to be 30 m above the surface),
T, is surface temperature (here, assumed equal to air temperature at 2m height), &,
is surface emissivity, and ¢, is atmospheric emissivity at reference height, Cs; is soil
heat capacity, AT, is change in air temperature over time interval Af, and z, is soil
depth that a temperature wave penetrates over time Af (here, assumed equal to the
thickness of the top soil layer). Following Amenu et al. (2005), the expressions for
estimating A, eg, 94, €5, and Cg,; are as follows

4098
A= ———775 ) xesalla) (A9)
(237.3+T,)
17.27(T — 273.15)
T) = 611 A1
@sarll) = 611 exp ( T - 3585 ) (A10)
zy-d zr—d,\1"
= K2U [In( v 0).In( ! ")] (A11)
Ja Zom Zoh
et (T)\ /7
g, = 0.642 ( sa a)> (A12)
Ta
Cooil = Coolig(1 = Osat) + Cuater® (A13)
2.128 (%sand) + 2.385 (%clay) 6
Cortg = 10 A4
solid ( (%sand) + (%clay) 8 (A14)

where « is von Karman constant, U is wind speed, d, is zero plane displacement height
(~0.667h,q), Zom and z,, are roughness length for momentum and heat transfer, re-
spectively (~0.136h,.4), hyeq is Vegetation height, Cgq is the heat capacity of the soil
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solid matrix, and C,, ., is the heat capacity of the soil water. The canopy conductance
9. (per unit ground area) is modeled as

9s9p )
= | ———— | LAl A15
9e (gs +3p (A19)
where LAl is leaf-area-index, g, is stomatal conductance per unit leaf area, and g,
is leaf boundary layer conductance per unit leaf area, which can be estimated with
adequate precision using (Jones, 1992)

U 0.5
g, = 0.00662 (F) (A16)

!
where d, is leaf characteristic dimension. The stomatal conductance g, (per unit leaf
area) is modeled based on Jarvis’ approach (Jarvis, 1976), which is given by

gs = 9smax - F(R).F(T) . f(w).f(D).1(C) (A17)

where g, max IS maximum stomatal conductance per unit leaf area, and f(R), 7(T), f(y),
f(D), and f(C) are factors (varying between 0 and 1) that account for the constraints
imposed on stomatal conductance by the radiation, temperature, leaf water status,
humidity, and CO, concentration, respectively. They are parameterized as (Noilhan
and Planton, 1989; Jones, 1992; Leuning, 1995; Lhomme et al., 1998)

f(R) = 1 - exp (~kgR,) (A18)
FT)=1-kr (Ta=Top) (A19)
na -1
f(w) = [1 + (Wu;::f) ] (A20)
1
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where kg, k7, kp, and n are empirical constants, Topt is the air temperature at which
the conductance attains maximum, yg,; is leaf water potential, w5, is the value of leaf
water potential at which f(y) is 50% of its maximum, and D vapor pressure deficit
(D=es—e,). Because CO, concentration in a natural environment is relatively constant
over time (Jones, 1992), the factor 7(C) is assumed equal to 1. The leaf water potential
is linked to the soil water potential and the transpiration rate through

L E,) (A22)

Yieat = Wsoil — ho (1 + Koot

where Koot is the above ground plant hydraulic conductivity (per unit ground area),
and h,, is the reference height for leaf location above the soil surface (approximated as
~0.80/¢g) -

A3 Parameterizations for the photosynthesis model

The carbon-limited A, light-limited A,, and export-limited A, assimilation rates are

ql

given by
C,-T
Ac = Vinax I - 0 ; Ci-T.>20 (A23)
C,‘ + KC (1 + K_I)
a =[S ., C-T,>0 (A24)
9 4 |C;+2r, ! "
1
Ag = Evmax (A25)

where V., is the maximum carboxylation rate, K, and K, are the Michaelis-Menten

coefficients for CO, and O,, ', is the CO, compensation point in the absence of res-

piration, C; and O; are internal leaf CO, and O, concentration, respectively, and J is
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the electron transport rate for a given absorbed photon irradiance and is given by the
smaller root of the following quadratic equation (Leuning, 1995; Daly et al., 2004),

BI? = (AQ + ) J + AQUay = 0 (A26)

where B and a are constants and J,,,, is the maximum rate of electron transport.
The parameters V., Jmax: Ko» Ko, @and I, are all functions of leaf temperature, T,
(Farquhar et al., 1980; Harley et al., 1992; Leuning, 1995; Daly et al., 2004), and are
expressed as follows:

H, T,
® [ (1 7))

Vinax = Vinaxo (A27)
1+ exp (375 )
V. TO
o [z (1-7)]
Jmax = Ymaxo 5.7 —Ho, (A28)
1+ exp( BgneT) )
K. =K., exp [_He (1 T")- (A29)
¢ o _RgasTo 7-/ i
K, = K,,exp [_Ho (1 T")- (A30)
? o _Rgasro 7-/ i
M= ao (1+ a7~ To) + ao(T) - T,)?) (A31)

where the terms are as defined in Table A1. In the above formulations, the effect of
leaf water status on assimilation rate is not taken into consideration. However, such
dependence is crucial for studies focusing on water-limited ecosystems. In this study
Eq. (20) is reformulated as

A = f(w). min (As, Ag, A;) =0 (A32)
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where the function f(y) takes care of the water/moisture limitation on assimilation rate,
and is assumed to take the same form as Eq. (A20). The intercellular CO, concen-
tration C;, which is used in the calculation of the assimilation rate (see Eqgs. A23 and
A24), is estimated from the solution of

C/2 +(9-Vimax = Catm + O)C; = (9 Vinax['. + O.Cqtm) = 0 (A33)

where

0 =K, (1 + %)

g= (@ + ﬁ) (Rgasratm> (A34)
9s 9» Patm

in which C,, is atmospheric CO, concentration, Ry, is universal gas constant, and
P,im is atmospheric pressure at temperature T,,,,. The leaf temperature, T,, is approxi-
mated using 1st-order solution of the energy balance equation, which is given by
c
(1= @Ry + (64 = £)0T4 = G = 2 (L2 ) (6,(T) - €2)
T, =T,+ (A35)

3 A 9c9a
4e,0T; +C, (7—gc+ga + ga)

where the variables are as defined before. The values of the various parameters of the
model described above are given in Table A1.
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Table 1. Some laboratory and field evidences of hydraulic redistribution by plant roots.

HESSD
4, 3719-3769, 2007

Source

Plant Species

Study Site

Mooney et al. (1980)

van Bavel and Baker (1985)
Corak et al. (1987)

Richards and Caldwell (1987)
Baker and van Bavel (1988)
Caldwell and Richards (1989)
Dawson (1993)

Wan et al. (1993)

Dawson and Pate (1996)
Emerman and Dawson (1996)
Burgess et al. (1998)
Burgess et al. (1998)

Yoder and Nowak (1999)
Burgess et al. (2000)

Millikin and Bledsoe (2000)
Song et al. (2000)

Wan et al. (2000)

Brooks et al. (2002)

Brooks et al. (2002)

Ludwig et al. (2003)

Moreira et al. (2003)
Espeleta et al. (2004)

Hultine et al. (2004)

Leffler et al. (2005)

Oliveira et al. (2005)

Brooks et al. (2006)

Shrubs
Bermudagrass
Alfalfa
Sagebrush, Grass
Cotton
Sagebrush, Grass
Sugar Maples
Broom Snakeweed
Proteaceous trees
Sugar Maples
Silky Oak
Eucalyptus tree
Shrubs, Grasses
Proteaceous tree
Blue Oaks
Sunflower

Maize

Ponderosa pine
Douglas-fir
Savanna trees
Savanna

Oaks, bunch grass
Leguminous tree
Cheatgrass
Amazon trees
Douglas-fir

Atacama Desert, Chile
Lab Experiment

Lab Experiment

Utah, USA

Lab Experiment

Utah, USA

New York, USA

Texas, USA

Western Australia

New York, USA

Kenya, Africa

Western Australia
Mojave Desert, Nevada, USA
Western Australia
California, USA

Lab Experiment, Kansas
Lab Experiment
Oregon, USA
Washington, USA
Tanzania, Africa
Central Brazil

South Carolina, USA
Arizona, USA

Rush Valley, Utah, USA
Brazil

Washington, USA
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Table A1. Values of model parameters used in this study. These values are compiled from
several studies, including Jarvis (1976); Jones (1992); Harley et al. (1992); Huang and Nobel
(1994); Leuning (1995); Lhomme et al. (1998); Kim and Lieth (2003); Daly et al. (2004); and

Amenu et al. (2005).

Parameter Value Unit Description

Koot rad 5x107° s Radial conductivity of root system

Krootax 2x107" mms™' Axial conductivity of root system
0.10 - Decay rate of throughfall

¢ 0.20 - Decay rate of K, with depth

1 251x10°  JK Latent heat of vaporization

Y 66.7 PaK™' Psychrometric constant

[ 5.67x10™° wWm™K™ Stefan-Boltzman constant

K 0.41 - Von Karman constant

ag 0.20 - Surface albedo

£s 0.97 - Surface emissivity

C, 1200 Jm3K! Heat capacity of air

Coater 4.18x10°  © Heat capacity of water

P 1000 kg m Density of water

a, 0.04 m Leaf dimension

J's max 15 mm Maximum stomatal conductance

kg 0.005 m2w~! Const. for radiation function

kr 0.0016 K2 Const. for temperature function

kp 0.00285 Pa”" Const. for vapor pressure function

Topt 298 K Optimum temperature

Wso -450000 mm Leaf potential at 50% conductance

K max 7.2x10° s Max. aboveground conductance

yéj 0.95 - Shape parameter

a 0.20 mol electron mol ™ Quantum yield

Ty 293.2 K Reference temperature

Vinaxo 50 pmolm=2s™ Value of V. at7, =T,

Imaxo 75 umol electron m™2s™" Value of Jo @t 7, =T,

H,, 116 300 Jmol™ Activation energy for V.,

Hyy 202000 “ Deactivation energy for V.,

H,, 79500 “ Activation energy for Jp .,

Hyy 201000 “ Deactivation energy for J,,x

S, 650 “ Entropy term

H, 59430 “ Activation energy for K,

H, 36000 “ Activation energy for K,

Koo 302 g molmol ™ Michaelis constant for CO,

Koo 256 000 “ Michaelis constant for O,

a, 34.6 “ CO, compensation point at 7,

a, 0.0451 K Coefficient in T,

a, 0.000347 K2 Coefficientin T,

Rgas 8.314 Jmol~ 'K~ Universal gas constant

0; 209000 umolmol ™ O, concentration

Catm 350 “ Atmospheric CO, conc.
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Fig. 1. Schematic description of the hydraulic redistribution.
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Fig. 2. Conceptual view of the hydraulic redistribution model as used in this study.
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Fig. 3. Parallel xylem conduits as conceptualized for a root system: R represents the radius of
the conduit, and z and r show the vertical and radial directions, respectively, the arrows indicate
the flow direction, and the parabolic curve indicates the velocity profile across the tube.
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Fig. 4. Schematic view of soil layers. (Middle) profile of fraction of roots and (right) profile of
soil texture in each soil layer for the study site depicted in Fig. 5.
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Fig. 5. Location and forest cover of the Sierra Nevada study site (source: http://nationalatlas.

gov/).
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Fig. 6. Seasonality of precipitation (left) and temperature (right) at the Sierra Nevada study site
as obtained from North American Regional Reanalysis (NARR) dataset.
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Fig. 7. Comparison of the hydraulically redistributed water (HRW) and the transpiration (Et) for

the study site.
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Fig. 8. Diurnal profiles of moisture uptake by plant roots for the study site: (top) without hy-
draulic redistribution, and (bottom) with hydraulic redistribution. The figures show the average
over the entire simulation period (1979—2005).
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Fig. 9. Seasonal profiles of moisture uptake by plant roots for the study site: (top) without
hydraulic redistribution, and (bottom) with hydraulic redistribution. The figures show the average

over the entire simulation period (1979—2005).

3765

[Jan]

0 02 04

0 02 04 0

Uptake (mm/day)

Wet
1 Season

s
[Jan]

5 & BB

S

&

050051 05 0 05 1 05 0 05 1

Uptake (mm/day)

HESSD
4, 3719-3769, 2007

A model for hydraulic
redistribution

G. G. Amenu and
P. Kumar

I b i

EG

()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3719/2007/hessd-4-3719-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3719/2007/hessd-4-3719-2007-discussion.html
http://www.egu.eu

Moisture Profile: [Casel] H ESSD
4, 3719-3769, 2007

0.3
1979 1983 1987 1981 1995 1998 2003 A model for hydl‘aUIiC
’E Moisture Profile: [Case?] 0z I’edistribution
"é’ 01
& G. G. Amenu and
-
3 P. Kumar
e 1983 1987 1991 1985 1999 2003
Effect of Hydraulic Redisnibudon: [Case2-Casel]
J k] T ol I ] ‘ b ] b | 0.1
2F "
1 A0 | D
verhige o ' 0.1
i )
1979 1983 1987 1981 1995 1998 2003 ! !
Time (years) -
Effect during winter {DJF) Effert during sumnmer {J]4) Effect aver the year ! !
1 1 1
3 3 2
4 4 4
'E 5 5 5
g6 6 &
57 7 7
] 8 8
™ 9 9 El
11 11 1
12 12 12
40 -20 0 20 40 60 4020 0 20 40 60 40 -20 0 20 40 6D _é
-
erm—  Printrtrendly Version
Fig. 10. Soil moisture profile over the entire simulation period (1979-2005) under Case 1 and _

Case 2 for the study site, showing the effect of hydraulic redistribution on the profile during
different years and seasons. The percentage change is with respect to Case 1.
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Fig. 11. Comparison of simulated annual cycles of transpiration, assimilation, and WUE for
Case 1 and Case 2 for the study site. Shown is an average cycle over the simulation period

(1979-2005). The percentage change is with respect to Case 1.
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Fig. 12. Comparison of simulated annual cycles of bottom drainage for Case 1 and Case 2
for the study site. Shown is an average cycle over the simulation period (1979-2005). The
percentage change shown is with respect to Case 1.
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Fig. 13. Comparison of simulated and observed soil moisture (left) and latent heat flux (right)
for the study site. The observation is from the nearby FLUXNET station, Blodgett station and
the results depict the average over the observation period from 1999 to 2005.
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